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Abstract—Retrieval-Augmented Generation (RAG) systems en-
hance Large Language Models (LLMs) but often lack the ability
to perform queries beyond simple semantic retrieval. Further-
more, they are not built with the requirement to run locally on
consumer hardware. We tackle this niche by introducing Coco, an
LLM agent designed to help its users reflect on transcriptions
of their conversations. Coco’s tools allow it to perform multi-
step reasoning, metadata filtering (time, speakers), and retrieval
based on language emotion. For evaluation, we present a synthetic
benchmark dataset with 100 question-answer pairs covering five
key capabilities. Experiments comparing Coco (using Llama-
3.3-70B-Instruct and gpt-4o-2024-11-20) against traditional RAG
show the agentic approach offers significant advantages. While
the Llama-based agent achieves a 7.4% improvement in GEval
Correctness over its RAG counterpart, the 4o agent widened this
gap to 31.8%, demonstrating the potential of agentic RAG while
highlighting the current bottleneck imposed by the base model’s
tool calling capability. Code and dataset are publicly available1.

I. INTRODUCTION

A. Motivation

Large Language Models (LLMs) and Retrieval Augmented
Generation (RAG) have established themselves as powerful
tools in a wide variety of text-based domains. But services
and products built around them mostly focus on productivity
related tasks such as programming or customer service. Mitra
Labs aims at leveraging the capabilities of modern Natural
Language Processing (NLP) technology to build Coco, a
knowledge-enhanced chatbot with access to a database of
transcribed conversations. Coco can help its user to reflect
on his life, track progress with respect to goals, and identify
patterns of behavior in conversations.

B. Problem Statement

This problem implies a set of technical requirements. Firstly,
Coco needs to be able to aggregate and abstract information of
its knowledge base. For instance, it should be able to answer
a question like ”What were my New Year’s resolutions and
am I sticking to them?”, which requires multiple queries to a
knowledge base and summarization of the retrieved informa-
tion. Secondly, Coco should be able to take meta-information
like temporal information into account. An example would be
the question ”What did I talk to Alice about last week?”, which

1https://github.com/mitralabs/coco

requires constraining the considered transcripts to those from
recordings of last week. Finally, due to the sensitivity of the
data, Coco should be able to run locally on consumer-grade
hardware. Consequently, available compute and memory are
heavily constrained.

Existing approaches might tackle individual aspects of these
requirements, but there is no ”all-in-one” solution available.
That also makes quantifying Coco’s performance a hard task,
because no public benchmark fits our use case.

C. Contributions

Our contributions are two-fold:

• We introduce Coco, an LLM-agent with a set of tools to
query its knowledge base in a more sophisticated manner
than current RAG approaches.

• To quantify Coco’s performance, we introduce a synthetic
benchmark dataset comprising 500 chunks and 100 sam-
ples that cover 5 different capabilities.

II. BACKGROUND

A. Text Embeddings

Generally, text embeddings are a numerical vector represen-
tations of text that encode its semantic meaning. That allows
to perform a range of text-based operations as numerical
operations. Most importantly, semantic similarity of text can
be approximated as vector similarity of the respective embed-
dings.

Contextual token embeddings are vector representations of
a single token, which can be a single character, a part of a
word, a full word, or even multiple words. Which and how
many characters are fused into a token is usually determined
by statistics about their co-occurence in a text corpus [1]. We
make use of contextual token embeddings to compute metrics
that quantify the similarity of the ground truth answers of our
benchmark and Coco’s predicted answers.

Modern contextual token embeddings are generated by text
encoder neural networks. The majority of them are derived
from a model called BERT [2], which is why text encoders
are often referred to as BERT-style models. To compute
the embeddings, a sentence S is first split to tokens S =
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(
t1, . . . , tn

)
∈ V n. Afterward, the whole sequence of tokens

is passed to a BERT-style encoder as

(hCLS, h1, . . . , hn, hSEP)

= BERT
((

[CLS], t1, . . . , tn, [SEP]
))

(1)

where [CLS] is a special token that will become relevant in
the subsequent paragraph and [SEP] is a special token that
signals the end of a sentence to the model. Since all tokens
of a sentence are processed together, each token’s embedding
takes its context into account. For instance, ”mouse” would get
assigned different embeddings depending on whether it occurs
in the text ”I bought a mouse for my PC” or ”My cat caught
a mouse”.

BERT-style models obtain their extensive understanding of
language from being trained on proxy-tasks on massive unla-
beled text corpora. The original BERT was trained on a corpus
of roughly 3.3 billion words on Masked Language Modeling
(MLM) [2], which means predicting randomly masked words
of the sequence. That language understanding can also be
leveraged to generate embeddings that encode the meaning
of the full sentence or text sequence.
Sentence embeddings encode the semantic meaning of a
sequence of tokens. (That sequence can be an actual sentence
or multiple sentences, the name is established but can be mis-
leading.) The starting point for a sentence embedding model is
a pretrained BERT-style text encoder. The sentence embedding
is then computed as the contextual token embedding of the
special [CLS] token. Due to the nature of the pretraining task,
this embedding is no meaningful representation of the whole
sequence’s semantics yet. That’s why the pretrained BERT
models are finetuned on sentence-level tasks.

For instance, if the sentence embeddings are used to retrieve
texts that are semantically similar to a query text, a very
simple finetuning procedure would look as follows: 1) Obtain
a dataset with labeled positive sentence pairs (same semantic
meaning) and create negative pairs (different semantic mean-
ing) as random pairs. 2) Compute [CLS] embeddings for both
sentences of the pairs. 3) Compute cosine similarities between
both embeddings as

cos_sim(a, b) =
a · b

||a||2 · ||b||2
(2)

for each pair. 4) Pull the cosine similarities of positive pairs
towards 1 and of negative pairs to −1. Since the model already
has learned useful intermediate representations for all tokens
during pretraining, it now merely has to learn how to aggregate
them into the [CLS] embedding such that the embedding’s
direction encodes the full text’s semantic meaning.

We use sentence embeddings to allow Coco to retrieve
relevant knowledge from its database by performing a sim-
ilarity search. For better retrieval performance, we use BGE-
M3 [3], a BERT-style text encoder finetuned with a more
sophisticated method: 1) For each positive pair, obtain hard
negative sentences using the sampling method introduced by
Xiong, Xiong, Li, et al. [4]. Hard negative sentences are

semantically close to the sentences of the positive pair, but not
similar. 2) For one positive pair, and between sentences of the
positive pair and the hard negative sentences, compute cosine
similarities of their sentence embeddings. 3) Constrain the sum
of all similarities to 1 and pull the positive pair towards 1.
That implicitly reduces similarities of pairs consisting of one
positive and one hard negative sentence. Consequently, the
model gets better at taking semantic subtleties into account,
which makes it useful for semantic retrieval.

B. Large Language Models

LLMs are used for text generation. Their training task is given
a sequence of text tokens, predict a discrete probability distri-
bution over the whole token vocabulary for which token comes
next. Text can then be generated by autoregressive sampling,
which means repeatedly sampling the predicted distribution
and appending the respective token to the sequence. Thus,
LLMs’ knowledge is constrained by the training corpus, and
the LLM might even hallucinate wrong facts. As a result,
vanilla LLMs are not useful as personalized chatbots because
they cannot reference any facts about the individual user.

C. RAG

Retrieval Augmented Generation refers to a variety of tech-
niques that first fetch context relevant to the user query, pass
that knowledge to an LLM via the prompt, and only then return
a final answer to the user. Usually, the prompt also contains an
instruction to answer with ”I don’t know” if the user’s question
cannot be answered from the retrieved context. Hence, RAG
is an efficient method to provide an LLM with individualized
knowledge without retraining, and reducing hallucinations.

In the simplest and most widespread approach, referred to
as traditional RAG from now on, that is achieved by fetching
text chunks from a database, and passing the top k in terms
of sentence embedding similarity to the user query as context
to the LLM. This approach serves as the baseline we compare
the Coco agent to.

D. LLM Agents

Artificial Intelligence (AI) agents were conceptualized long
ago. Russell and Norvig [5] define agents as ”Anything
that perceives its environment and acts upon it”. LLMs can
certainly perceive their environment through text representa-
tions, but generating new text hardly qualifies as acting upon
it. Schick, Dwivedi-Yu, Dessi, et al. [6] were the first to
equip LLMs with the ability to call arbitrary functions of a
programming language, thereby qualifying tool calling LLMs
as agents. We leverage LLM agents for Coco to go beyond
static RAG retrieval procedures by giving it the ability to
perform arbitrary combinations of knowledge base queries via
function calls.

III. RELATED WORK

As previously mentioned, there is work related to ours. But
existing work predominantly only deals with individual as-
pects of our requirements. Generally, the trend seems to be



going away from traditional RAG towards more sophisticated
retrieval patterns that allow to answer complex questions.

There is a large body of work aimed at answering com-
plex questions by performing multi hop retrieval, multiple
semantic queries with different query sentences. IRCoT [7]
does so by interleaving chain of thought (COT) steps with
retrieval. COT means decomposing the user query to a set of
steps and performing them sequentially. IRCoT always uses
the current COT step as semantic query. ITER-RETGEN [8]
tackles multi hop questions with iterative retrieval to refine
the answer, always using the original query plus the generated
answer as the new query. RA-ISF [9] integrates modules that
can recursively break down complex questions into simpler
subquestions when the system’s confidence in the answer is
low. Similarly, MetaRAG [10] employs a metacognitive com-
ponent to dynamically rewrite retrieval queries and generation
prompts if the initial answer quality is deemed insufficient.
RQ-RAG [11] takes a different approach by fine-tuning an
LLM specifically to decompose a user query into a structured
tree of sub-queries for the RAG system. While we are faced
with the same multi hop questions, these approaches are not
feasible for us. They all employ rigid query patterns that are
not flexible and general enough to be combined with solutions
for our other requirements.

Other work deals with multi hop questions by giving an
LLM agent the ability to perform semantic queries via tool
calls. Auto-RAG [12] fine-tunes a very small tool-calling LLM
agent on a synthetically generated dataset of RAG query
chains. This is a much more general approach and similar to
what Coco does. But since we also require strong performance
on other tasks, a small, finetuned LLM is not feasible for us.

Besides answering multi hop questions, another challenge
is incorporating metadata into the retrieval process. Multi-
MetaRAG [13] addresses this by extracting metadata filters
directly from the user query and using them to pre-filter
the document database before semantic search. While we
don’t have a separate module only concerned with extracting
metadata filters, our agent’s retrieval tools also allow filtering
considered pieces of knowledge.

IV. DATASET

In the following, we motivate and present the custom dataset
we’ve created for benchmarking Coco.

A. Mitra Dataset

There is no public benchmark that tests all of Coco’s capa-
bilities. Existing benchmarks mostly cover simple semantic
retrieval without multi hop requirements or metadata inclusion.
Even though there are datasets testing single aspects of our
requirements, they are not based on conversation excerpts.

Therefore, to test Coco properly, we present the Mitra
Dataset, a public, synthetic, German, conversational dataset
for retrieval and question answering (QA) tasks. It comprises a
knowledge base consisting of 500 conversational chunks with
recording timestamps and 100 samples consisting of a query,
a ground truth answer, and the IDs of relevant chunks. The

dataset is split into 5 different categories with 20 samples each,
and each category is split into 15 training samples and 5 test
samples.

To ensure an internally consistent knowledge base and
correct samples, we leverage the large context window of
"gemini-2.5-pro-exp-03-25" by Google DeepMind to create
the initial version of the dataset in one shot. We ensure correct-
ness and consistency for each individual category by asking
the same LLM to verify the category’s samples and chunks
with respect to the following questions: 1) Do the samples
cover the use case of the respective category well? 2) Are the
ground truth answers correct? 3) Is answering the ground truth
answer possible without ambiguity, given the chunks? 4) Do
any ground truth answers contain information not explicitly
required to answer the query question? Finally, we inspect
random samples manually to further ensure correctness and
consistency.

B. Categories
Each of the 5 categories is directly derived from one require-
ment for Coco. Examples for each category are presented in
Table I.
Language Sentiment: Coco should be able to help the user
on emotions expressed in certain situations. Accordingly, the
system has to be able to fetch chunks by the emotions
expressed in their language.
Multi Query: Coco should be able to answer complex ques-
tions based on its knowledge base. Therefore, the system must
be able to perform multi hop retrieval.
People: Coco should be able to help the user track his
relationships with specific people. Consequently, Coco must
be able to filter conversations based on the people participating
in them.
Summary: Coco should be able to help the user identify
abstract patterns in his conversations. Hence, it should be able
to summarize large quantities of chunks.
Time: Coco should be able to take temporal constraints into
account. Thus, the system has to be able to filter chunks based
on time, and interpret relative time statements of chunks in
relation to the chunks’ recording timestamps.

V. COCO AGENT

In this section, we introduce the Coco agent and show how
its tools give it all capabilities we require.

A. System Description
Coco is an agentic LLM with tools to perform RAG-like
semantic queries. For each user query, Coco can decide to
perform an arbitrary number of function calls before generat-
ing an answer. This makes our approach much more flexible
than traditional RAG or even advanced RAG techniques that
still rely on a static query pattern like those introduced in
section III. Furthermore, additional capabilities are trivial to
add by simply adding more tools. A flow diagram illustrating
the difference between traditional RAG and the Coco agent
can be found in Figure 1. Coco’s tools are shown in Figure 2.



Figure 1. Flow diagram comparing traditional RAG to the Coco agent.
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Figure 2. Tools available to the Coco agent.
procedure SEMANTIC_QUERY(query, [num], [start], [end], [sub-
str])

return Chunks via similarity between query embedding and
chunk text embedding

Filters: Applied before similarity search:
If start: Filter for chunks after start time
If end: Filter for chunks before end time
If substr: Filter for chunks containing substr

Returns: Top num (default 25) matching chunks
(incl. content, metadata, distance)

end procedure

procedure EMOTION_QUERY(emotions, [num], [start], [end], [sub-
str])

return Chunks via similarity between emotions embedding and
an embedding of a description of emotions present in the chunk
language extracted using an LLM

Filters: Applied before similarity search:
If start: Filter for chunks after start time
If end: Filter for chunks before end time
If substr: Filter for chunks containing substr

Returns: Top num (default 25) matching chunks
(incl. content, metadata, distance)

end procedure

procedure GET_CURRENT_DATETIME
return Current date and time (ISO format)

end procedure

B. Requirements

Coco can use its tools to tackle all required task categories
(and therefore dataset categories) as follows:

Language Sentiment: Coco has the ability to retrieve chunks
not just by semantic meaning, but also by emotions expressed

in the chunk language using its emotion_query tool.
Multi Query: Coco can perform as many tool calls, and
therefore as many semantic_query calls, as needed. Each
decision for a next action is based on the whole conversation
(and tool call) history, which means semantic queries can by
dynamically issued based on the previous queries’ results.
People: Coco has the ability to filter considered chunks based
on the (case-insensitive) presence of a substring with both
semantic_query and emotion_query. Since chunks
are created with speaker diarization, that filter can be used
to fetch chunks of conversations with a specific person.
Summary: Coco can perform multiple semantic queries and
dynamically set the number of retrieved chunks.
Time: Coco can filter considered chunks for
semantic_query and emotion_query based on
time stamps. Its tools also return the recording timestamp
metadata field in addition to the chunk text. So time references
contained in chunks can be interpreted correctly.

VI. EVALUATION

A. Metrics
We evaluate Coco’s performance using 3 different classes of
QA metrics. They all compare the generated final answer to
the benchmark dataset’s ground truth answer. Metrics based
on token n-grams deal well with named entities and text
that requires exact matches such as statements about time.
Unfortunately, they do not take n-gram order into account and
cannot deal well with synonyms, alternative formulations etc.
Embedding-based metrics on the other hand capture semantic
similarity well, independent of the exact word choice. But they
have problems with negations and exact information such as
dates and places, because different but similar information
will still be very close in the embedding space. LLM as
a judge metrics have the highest correlation with human
judgement, but they are very expensive to compute and not
fully deterministic.
BLEU [14] is an n-gram metric that primarily measures
precision, indicating how much of the generated text is present
in the ground truth. It is calculated as the geometric mean of
modified n-gram precisions pn for n-grams up to length N
(in our case N = 4), multiplied by a brevity penalty BP to
penalize prediction lengths c much shorter than the ground
truth length r. SacreBLEU [15] provides a standardized im-
plementation.

BLEU = BP · exp

(
N∑

n=1

wn log pn

)
(3)

where wn = 1/N and the brevity penalty is:

BP =

{
1 if c > r

e(1−r/c) if c ≤ r
(4)

The modified precision pn is calculated as

pn =

∑
n-gram∈prediction Countclip(n-gram)∑
n-gram′∈prediction’ Count(n-gram′)

(5)



where Count(n-gram) is the number of times an n-gram
appears in the prediction, and Countclip(n-gram) is the same
count clipped to the maximum number of times that n-gram
appears in any single ground truth text. This clipping prevents
a prediction from getting high precision by repeating phrases
with high frequency in natural language excessively. prediction
is the set of all correctly predicted n-grams and prediction’ is
the set of all predicted n-grams. We employ BLEU to get a
sense of Coco’s precision with respect to exact information
such as time.
ROUGE [16] is also an n-gram metric and focuses on recall,
assessing how much of the ground truth text is captured in the
prediction. ROUGE-N measures the recall of n-grams:

ROUGE-N =

∑
n-gram∈GT Count(n-gram)∑

n-gram′∈GT’ Count(n-gram′)
(6)

where GT is the set of all correctly predicted n-grams and
GT′ is the set of all predicted n-grams. ROUGE-L uses the
Longest Common Subsequence (LCS) between a prediction Y
(length n) and a ground truth X (length m) to compute recall
Rlcs, precision Plcs, and an F1-score Flcs:

Rlcs =
LCS(X,Y )

m
(7)

Plcs =
LCS(X,Y )

n
(8)

ROUGE-L = Flcs =
(1 + β2)RlcsPlcs

Rlcs + β2Plcs
(9)

In our case, β = 1. We use ROUGE to quantify Coco’s recall
with respect to exact information like time.
BERTScore [17] computes precision, recall, and F1 score
based on the cosine similarity of contextual token embeddings
(e.g., from BERT) between the prediction (p1, . . . , pm) and
ground truth (r1, . . . , rk) texts.

BERTScore R = RBERT =
1

k

k∑
i=1

max
j=1,...,m

cos_sim(ri, pj)

(10)

BERTScore P = PBERT =
1

m

m∑
j=1

max
i=1,...,k

cos_sim(ri, pj)

(11)

BERTScore F1 = FBERT =
2PBERT ·RBERT

PBERT +RBERT
(12)

We employ BERTScore to get a sense for precision and recall
within individual samples in the semantic domain.
SemScore [18] measures the cosine similarity between the
sentence embedding of the prediction Epred and the ground
truth answer Egt, using a model explicitly fine-tuned for
sentence similarity tasks.

SemScore = cos_sim(Epred, Egt) (13)

The model used by Aynetdinov and Akbik [18] is only
trained on English text, which is why we additionally compute
SemScore Multilingual using a strong sentence similarity

model also trained on a German corpus called ”paraphrase-
multilingual-mpnet-base-v2”. We use SemScore to quantify
general semantic similarity between Coco’s answers and the
ground truth answers.
G-Eval [19] provides a framework for using LLMs as evalu-
ators. Liu, Iter, Xu, et al. [19] define an evaluation criterion
via prompt and let the LLM generate a COT to calculate it.
We found that to be inconsistent and not correlate well with
our judgement. A hard-coded sequence of steps works much
better, ours can be found in Listing 1. While Liu, Iter, Xu, et
al. [19] calculate their final score as the sum of all possible
integer scores weighted by their predicted token probabilities,
we have to use the score with maximum probability directly
because we have to rely on an LLM API to compute the scores
due to resource constraints. The LLM we employ as a judge is
”Llama-3.3-70B-Instruct”. While the metric is generated by an
LLM and thus in principle not fully deterministic, we’ve found
it to behave deterministically in practice with a temperature
parameter of 0. This amplifies the differences in predicted
probabilities so much, the predicted distribution approaches
a discrete Dirac delta. We call our version GEval Correctness
and find that it is the best heuristic for Coco’s performance.

B. Setup
We compare the Coco agent against a traditional RAG baseline
on our benchmark dataset. In both cases, we use ”Llama-
3.3-70B-Instruct” (Llama) because it is small enough to be
deployable on consumer hardware, finetuned for tool calling,
and available via public APIs for faster, parallel testing. The
temperature is always set to 0 to make experiments (pseudo)
deterministic. Our embedding model is BGE-M3 [3] in all
cases because we found it to be the strongest compared to
others we tried. For the traditional RAG, we use the top k = 25
most similar chunks to the user query as context. We keep
intersecting sections of RAG prompt and agent system prompt
as similar as possible. The RAG prompt template can be seen
in Listing 2 and the Coco agent system prompt in Listing 3. To
extract the underlying texts for emotion embeddings, we also
use ”Llama-3.3-70B-Instruct” in all cases. To verify how our
approach works with stronger models, we run the same tests
with ”gpt-4o-2024-11-20” (4o), a SOTA model on tool calling
according to the Berkely Function-Calling Leaderboard [20].
We perform all optimizations (available tools, prompts, etc.)
only with respect to the train subset of our benchmark data,
which means we can use the unseen test subset to verify if
our optimizations generalize.

C. Results
Table II gives a comprehensive overview of all results. Figure 3
shows relevant metrics computed over all categories of the
full dataset. Figure 4 shows GEval Correctess by individual
categories of the full dataset and includes values for the SOTA
tool calling model 4o.

D. Discussion
Generally, Table II shows our optimizations transfer well
from the train subset to the test subset. Of course, there are



Figure 3. Comparison using ”Llama-3.3-70B-Instruct” on all categories of
the full dataset.

Figure 4. Comparison using ”Llama-3.3-70B-Instruct” and ”gpt-4o-2024-11-
20” using the GEval Correctness metric on the full dataset.

deviations of individual metrics for individual categories, but
that is expected due to the variance in sample quality caused
by synthetic generation. Therefore, and because of the low
sample size of our dataset, we report all further results over
the full dataset to make statistically meaningful statements.

As shown in Figure 3, our Coco agent consistently out-
performs traditional RAG on all metrics, but not by a large
margin. Qualitative analysis showed the primary reason to
be Llama’s bad tool calling performance. Simple tool calls
work well, but combinations of tool calls or clever usage of
available tools does not. Related work (see section III) shows
that using complex prompting schemata or even finetuning on
our use case is expected to work. But Sutton’s Bitter Lesson
[21] (Scaling compute works better that clever methods) seems
to hold for NLP [22], which means our time is better spent
optimizing different parts of the product and waiting for
distilled versions of stronger models than performing too many
specific optimizations.
A breakdown by category gives further insights. We refer
to Figure 4 and include results of o4 to confirm our intuition,
that Coco’s performance is limited by Llama’s tool calling

capabilities.
Coco’s poor results on the language sentiment category

using both models implies our emotion_query tool does
not work as well as expected.

On multi query, the Llama version only outperforms tra-
ditional RAG by a small margin. This is likely due to
Llama’s inability to execute sensible chains of queries, which
is confirmed by the very strong performance of the 4o agent
compared to 4o RAG on that category.

The people category requires smart argument usage. The
substring filter is not explicitly called ”people filter”, but can
perfectly well be used as such. Again, Llama Coco only
slightly outperforms its RAG baseline, and 4o Coco by a large
margin, which points at the fact that only 4o figured out how
to leverage the substring filter correctly.

On the summary category, the Coco agents are roughly on
par with their RAG counterparts. While the agents can in
principle choose the number of retrieved chunks freely, they
have bad intuition for it and mostly seem to go with the k
provided in their system prompt’s example tool calls. This
was set equal to the RAG baseline’s top k parameter for a fair
comparison.

Answering the time questions mostly requires setting time
filters from the user prompt, which is straightforward. That’s
why Coco agents of both models outperform RAG by a large
margin. Being better with respect to time is likely also the
reason Coco’s performance increase over the baseline is bigger
for n-gram based metrics, as illustrated in Figure 3.

Overall, the breakdown by dataset (and requirement) cate-
gory confirms our intuition that the LLMs tool calling capa-
bilities are the major performance bottleneck of Coco agents.
The 4o agent outperforms its RAG baseline by a much larger
margin than the Llama agent on the full dataset.

VII. CONCLUSION

We introduce Coco, a local, agentic RAG system that helps
the user reflect on his conversations, We show our agent beats
a RAG baseline by 7.4% in terms of GEval Correctness over
all categories and splits of our benchmark. The agent’s main
performance bottleneck is Llama’s poor tool calling capabil-
ities. This is confirmed by the fact the agent’s performance
advantage over RAG raises to 31.8% when using 4o. With
tool calling capabilities on the rise, we expect this trend to
continue.

Additionally, we present the Mitra dataset, a QA benchmark
derived directly from Coco’s system requirements. We find our
benchmarks results to be representative of subjective system
performance. This leads us to conclude that custom, synthetic
datasets are a good way to quantify system performance.
Generation is also relatively cheap (w.r.t. time and money)
nowadays.

Obvious future work includes providing the Coco agent
with a better performing emotion_query tool, verifying
the validity of our chosen metrics by obtaining correlations
with human judgement, and extending the benchmark dataset
with more diverse samples based on user product feedback.
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APPENDIX

Table I
MITRA DATAEST SAMPLE EXAMPLES FOR EACH CATEGORY.

Category Query GT Answer First Relevant Chunk

Language Sentiment
In welchen Situationen
wirkte ich nervös oder
unsicher?

Du wirktest besonders nervös und un-
sicher in Gesprächen über Projekt Al-
pha, insbesondere wenn du mit Vorge-
setzten wie Herr Müller oder Frau
Schmidt sprachst oder kurz vor wichti-
gen Präsentationen dazu.

[Datetime: 2024-01-10 09:30]
Ich: Morgen Frau Schmidt. Haben Sie kurz Zeit
wegen Projekt Drache?
Frau Schmidt: Ja, aber nur fünf Minuten. Was gibtś?
Ich: Ich bräuchte noch Input bezüglich der Ziel-
gruppe. Da bin ich etwas unsicher.
Frau Schmidt: Schicken Sie mir Ihre Fragen per
Mail, ich antworte später.
(10 chunks total)

Multi Query
Was waren meine Neu-
jahrsvorsätze für 2024, und
habe ich sie erreicht?

Deine Vorsätze für 2024 waren, einen
10km-Lauf zu schaffen und mehr
Bücher zu lesen. Du hast den 10km-
Lauf im Dezember 2024 geschafft und
bis dahin neun Bücher gelesen, womit
du beide Ziele erreicht hast.

[Datetime: 2024-01-02 20:00]
Luise: Na, gute Vorsätze fürs neue Jahr?
Ich: Jaa, die Klassiker. Ich will versuchen endlich
mal einen 10km Lauf zu schaffen und mehr Bücher
zu lesen, nicht nur Arbeitssachen.
Luise: Ehrgeizig! Viel Erfolg dabei!
(4 chunks total)

People
Welches Buch habe ich auf
Empfehlung von Tom gele-
sen?

Auf Empfehlung von Tom hast du ’Der
Hundertjährige, der aus dem Fenster
stieg und verschwand’ gelesen.

[Datetime: 2024-06-20 17:00]
Ich: Tom, hast du einen Tipp für ein gutes Buch?
Eher was Leichtes.
Tom: Klar, wie wäre es mit ’Der Hundertjährige, der
aus dem Fenster stieg und verschwand’?
Ich: Oh ja, davon habe ich gehört. Ist das lustig?
Tom: Sehr!
(3 chunks total)

Summary Wie verlief mein Lesejahr
2024?

Du hattest dir vorgenommen, mehr zu
lesen. Du lasest u.a. ’Der Schatten
des Windes’, ’Die Mitternachtsbiblio-
thek’, ’Der Hundertjährige’ und ’Qual-
ityLand’. Insgesamt hast du neun Bücher
gelesen und damit dein Ziel übertroffen.

[Datetime: 2024-01-02 20:00]
Luise: Na, gute Vorsätze fürs neue Jahr?
Ich: Jaa, die Klassiker. Ich will versuchen endlich
mal einen 10km Lauf zu schaffen und mehr Bücher
zu lesen, nicht nur Arbeitssachen.
Luise: Ehrgeizig! Viel Erfolg dabei!
(13 chunks total)

Time In welchem Monat wollte
ich den Keller aufräumen?

Du wolltest den Keller im Februar 2025
aufräumen.

[Datetime: 2025-01-25 18:00]
Lena: Was steht bei dir so an in nächster Zeit?
Ich: Och, nicht viel. Nächsten Monat will ich endlich
mal meinen Keller aufräumen. Das schiebe ich schon
ewig vor mir her.
Lena: Haha, der Klassiker!
(1 chunk total)

Listing 1. Hardcoded COT for our GEval Correctness metric. PRED, GT, and Q stand for the variable names used for the predicted answer, ground truth
answer, and user query respectively
1) List all statements made by {PRED}.
2) List all statements made by {GT}.
3) Make sure statements of {PRED} answer the question or fulfill the request posed by {Q}. (

↪→ IMPORTANT: Only pay attention to semantic meanings, NOT sentence structure, grammar,
↪→ word choice, etc.)

4) Make sure all statements of {PRED} are present in {GT}. (IMPORTANT: Only pay attention to
↪→ semantic meanings, NOT sentence structure, grammar, word choice, etc.)

5) Make sure {PRED} contains no statements not present in {GT}. (IMPORTANT: Only pay attention
↪→ to semantic meanings, NOT sentence structure, grammar, word choice, etc.)

6) Make sure you do not let differences in sentence structure, grammar, word choice, etc.
↪→ affect your score.

Listing 2. Prompt template for the RAG baseline. Note that we have verified an English prompt template works better, even if the dialogue language and
context is German.
You are Coco, a helpful assistant who provides the best possible help to users. You speak

↪→ German, unless the user explicitly starts talking in another language.

## Your Knowledge
- Your knowledge is provided as retrieved chunks from a knowledge base below in the Context

↪→ section.
- You interpret all document content with respect to the document’s metadata.
- IMPORTANT: You act as if you simply remember your knowledge.



## Answer Style
- You answer very concisely (up to 50 tokens). One sentence if possible! Only if you cannot

↪→ include all necessary information, you use longer answers.
- You never include information that is not part of the user’s question.
- You never include information that is not part of the knowledge base.
- You never include information that is not part of the documents.
- You never include information that is not part of the metadata.

## Context
{context}

## User Query
{query}

Listing 3. System prompt for the Coco agent. We had to replace German Umlauts with ASCII chars, in the original prompt they are actual Umlauts. Note
that we have verified an English system prompt works better, even if the dialogue language and context is German.
You are Coco, a helpful assistant who provides the best possible help to users. You use tools

↪→ that you have access to. You speak German, unless the user explicitly starts talking in
↪→ another language.

# Tools
- You can always execute tools before responding.
- You never ask if you should execute a tool, you just do it.
- You never mention that you will use a tool, you just do it.
- Answering some questions requires multiple tool calls. If that is the case, you call the

↪→ tools one after the other. You don’t ask for confirmation.
- You always reference the tool results if they are useful for answering the question.

## IMPORTANT:
If you call a tool, you ALWAYS respond with WELL FORMATTED JSON!
Here’s the format you use:
{
"name": "<tool_name>",
"parameters": {
"<param1_name>": "<param1_value>",
"<param2_name>": "<param2_value>",
}
}

ATTENTION: Make sure you only pass the arguments the tool expects! You can find those in the ’
↪→ properties’ section of the tool description.

## get_current_date_time tool
- If the user’s question contains any temporal constraints relative to the current date and

↪→ time, you use the get_current_date_time tool to get the current date and time before
↪→ using any other tool.

## semantic_query tool
- You extensively use the semantic_query tool to access your knowledge.
- If you identify temporal constraints in the user query, you use the tool’s start and end

↪→ datetime parameters to filter the considered chunks.
- You solve complex problems by performing sequences of semantic_query calls, where each query

↪→ is based on the results of the previous query.
- The semantic search is not perfect, so you stay on the safe side by always retrieving more

↪→ chunks than strictly necessary. Especially when you plan to perform other
↪→ semantic_queries based on the results!

- IMPORTANT: Be very careful with the contains_substring parameter. ONLY use it for PROPER
↪→ NAMES (e.g. person’s names, organizations, locations, etc.)! NEVER use it for other
↪→ queries!

### Example 1:
#### User query:
Welche Neujahresvorsaetze habe ich 2025 gegenueber Bob erwaehnt habe und habe ich sie erfuellt?

#### Your tool calls:
{



"name": "semantic_query",
"parameters": {
"query_text": "Neujahresvorsatz",
"num_results": 25,
"start_date_time_iso": "2024-12-15T00:00:00.000000",
"end_date_time_iso": "2025-01-31T23:59:59.999999",
"contains_substring": "Bob"
}
}
[Response: "Neujahresvorsatz: 5000 Euro sparen, 10 kg abnehmen"]
{
"name": "semantic_query",
"parameters": {
"query_text": "sparen",
"num_results": 25,
"start_date_time_iso": "2025-01-01T00:00:00.000000",
}
}
[Some response]
{
"name": "semantic_query",
"parameters": {
"query_text": "abnehmen",
"num_results": 25,
"start_date_time_iso": "2025-01-01T00:00:00.000000",
}
}
[Some response]

### Example 2:
#### User query:
Mit wem habe ich ueber Ted Chiang gesprochen?

#### Your tool calls:
{
"name": "semantic_query",
"parameters": {
"query_text": "Ted Chiang",
"num_results": 25,
}
}
[Some response]

### Example 3:
#### User query:
Welche Urlaubsziele habe ich in 2023 in Erwaegung gezogen?

#### Your tool calls:
{
"name": "semantic_query",
"parameters": {
"query_text": "Urlaubsziel",
"num_results": 25,
"start_date_time_iso": "2023-01-01T00:00:00.000000",
"end_date_time_iso": "2023-12-31T23:59:59.999999",
}
}
[Some response]

## emotion_query tool
- When you need to fetch chunks by their emotion, you use the emotion_query tool to query the

↪→ database based on chunks’ language emotion.
- You set the "query_text" parameter to an ENGLISH string containing the emotions you want to

↪→ search for in a comma separated list.
- If you identify temporal constraints in the user query, you use the tool’s start and end

↪→ datetime parameters to filter the considered chunks.
- The emotion search is not perfect, so you stay on the safe side by always retrieving more



↪→ chunks than strictly necessary.
- IMPORTANT: Be very careful with the contains_substring parameter. ONLY use it for PROPER

↪→ NAMES (e.g. person’s names, organizations, locations, etc.)! NEVER use it for other
↪→ queries!

### Example 1:
#### User query:
Bei wem bin ich immer super gluecklich, wenn ich mit ihm spreche?

#### Your tool calls:
{
"name": "query_text",
"parameters": {
"emotion_text": "happy, joyful, thrilled, excited, energetic, enthusiastic, satisfied",
"num_results": 25,
}
}
[Some response]

### Example 2:
#### User query:
In welchen Situationen bin ich unsicher?

#### Your tool calls:
{
"name": "query_text",
"parameters": {
"emotion_text": "anxious, insecure, nervous, self-doubting",
"num_results": 25,
}
}
[Some response]

# Your Knowledge
- Your knowledge is stored in the database, which you can access through tools.
- When the user asks for any information, use the database tools to find the answer.
- If you set certain filters on the database, you don’t mention them in the query string as

↪→ well.
- You interpret all document content with respect to the document’s metadata.
- Your knowledge is in German, so you should make database queries in German as well.
- IMPORTANT: You act as if you simply remember your knowledge. You never mention the database

↪→ itself to the user. (But you obviously reference its content.)

# Answer Style
- You answer very concisely (up to 50 tokens). One sentence if possible! Only if you cannot

↪→ include all necessary information, you use longer answers.
- You never include information that is not part of the user’s question.
- You never include information that is not part of the knowledge base.
- You never include information that is not part of the documents.
- You never include information that is not part of the metadata.



Table II
COMPREHENSIVE RESULT OVERVIEW OF TRADITIONAL RAG VS. COCO AGENT.

Split Train Test Full
Base Model Llama 4o Llama 4o Llama 4o
Model Type Rag Agent Rag Agent Rag Agent Rag Agent Rag Agent Rag Agent

Category Metric Group Metric

Language Sentiment

GEval GEval Correctness 0.300 0.150 0.444 0.287 0.500 0.200 0.500 0.450 0.360 0.210 0.495 0.360

ROUGE

ROUGE-1 0.392 0.322 0.412 0.370 0.336 0.372 0.383 0.293 0.367 0.339 0.383 0.379
ROUGE-2 0.192 0.147 0.195 0.157 0.090 0.201 0.181 0.135 0.168 0.165 0.169 0.167
ROUGE-L 0.318 0.273 0.344 0.301 0.266 0.325 0.295 0.238 0.290 0.285 0.314 0.306

ROUGE-Lsum 0.318 0.273 0.344 0.298 0.266 0.325 0.295 0.238 0.290 0.285 0.317 0.306

BERTScore
BERTScore P 0.811 0.762 0.798 0.757 0.762 0.750 0.746 0.710 0.796 0.774 0.768 0.755
BERTScore R 0.753 0.729 0.765 0.765 0.723 0.707 0.750 0.742 0.742 0.727 0.751 0.767
BERTScore F1 0.780 0.744 0.780 0.760 0.742 0.728 0.747 0.725 0.767 0.748 0.758 0.761

SacreBLEU
SacreBLEU 0.097 0.068 0.114 0.081 0.067 0.095 0.099 0.097 0.089 0.073 0.104 0.090
BLEU BP 0.669 0.754 0.775 0.949 0.676 0.675 0.790 1.000 0.662 0.669 0.786 0.963

SemScore
SemScore Multilingual 0.773 0.692 0.770 0.753 0.702 0.645 0.731 0.750 0.745 0.703 0.765 0.737

SemScore 0.640 0.588 0.650 0.603 0.595 0.694 0.634 0.594 0.625 0.627 0.622 0.591

Multi Query

GEval GEval Correctness 0.362 0.388 0.475 0.575 0.200 0.250 0.050 0.500 0.310 0.340 0.390 0.600

ROUGE

ROUGE-1 0.365 0.393 0.455 0.474 0.323 0.516 0.452 0.521 0.346 0.441 0.438 0.496
ROUGE-2 0.125 0.159 0.190 0.216 0.145 0.260 0.239 0.278 0.123 0.191 0.184 0.245
ROUGE-L 0.286 0.297 0.351 0.386 0.275 0.464 0.415 0.484 0.276 0.346 0.352 0.420

ROUGE-Lsum 0.286 0.297 0.359 0.396 0.275 0.464 0.415 0.484 0.276 0.346 0.359 0.427

BERTScore
BERTScore P 0.760 0.760 0.750 0.767 0.767 0.836 0.796 0.852 0.756 0.785 0.758 0.794
BERTScore R 0.722 0.738 0.751 0.784 0.756 0.809 0.796 0.816 0.721 0.755 0.757 0.793
BERTScore F1 0.740 0.749 0.750 0.775 0.762 0.822 0.796 0.833 0.738 0.769 0.757 0.793

SacreBLEU
SacreBLEU 0.075 0.095 0.121 0.128 0.043 0.150 0.102 0.145 0.063 0.102 0.102 0.142
BLEU BP 0.750 0.761 0.910 0.899 0.870 0.806 0.921 0.759 0.744 0.768 0.877 0.853

SemScore
SemScore Multilingual 0.752 0.797 0.814 0.857 0.803 0.911 0.816 0.926 0.759 0.827 0.830 0.878

SemScore 0.662 0.720 0.702 0.784 0.757 0.846 0.716 0.880 0.684 0.748 0.694 0.801

People

GEval GEval Correctness 0.338 0.350 0.275 0.613 0.500 0.600 0.500 0.500 0.370 0.410 0.360 0.670

ROUGE

ROUGE-1 0.373 0.547 0.427 0.557 0.359 0.689 0.523 0.571 0.358 0.582 0.437 0.547
ROUGE-2 0.196 0.338 0.248 0.341 0.209 0.396 0.293 0.320 0.203 0.347 0.243 0.320
ROUGE-L 0.314 0.471 0.384 0.471 0.306 0.567 0.417 0.366 0.312 0.491 0.374 0.454

ROUGE-Lsum 0.314 0.471 0.384 0.474 0.306 0.567 0.417 0.366 0.312 0.491 0.374 0.456

BERTScore
BERTScore P 0.768 0.834 0.778 0.811 0.776 0.879 0.814 0.809 0.776 0.836 0.766 0.801
BERTScore R 0.737 0.822 0.783 0.843 0.727 0.843 0.810 0.797 0.733 0.827 0.784 0.842
BERTScore F1 0.749 0.827 0.779 0.826 0.749 0.860 0.812 0.802 0.753 0.831 0.773 0.821

SacreBLEU
SacreBLEU 0.089 0.193 0.135 0.200 0.070 0.212 0.216 0.154 0.088 0.188 0.136 0.187
BLEU BP 0.676 0.850 0.878 0.959 0.580 0.764 0.860 0.855 0.703 0.852 0.902 0.966

SemScore
SemScore Multilingual 0.678 0.852 0.746 0.884 0.628 0.888 0.750 0.759 0.662 0.856 0.739 0.876

SemScore 0.677 0.821 0.695 0.812 0.605 0.806 0.685 0.818 0.673 0.814 0.672 0.802

Summary

GEval GEval Correctness 0.275 0.325 0.425 0.487 0.450 0.350 0.450 0.400 0.330 0.300 0.450 0.490

ROUGE

ROUGE-1 0.307 0.305 0.390 0.370 0.245 0.228 0.276 0.221 0.312 0.281 0.350 0.342
ROUGE-2 0.098 0.098 0.121 0.128 0.056 0.033 0.054 0.032 0.096 0.092 0.105 0.102
ROUGE-L 0.227 0.215 0.284 0.264 0.192 0.173 0.207 0.170 0.236 0.201 0.254 0.243

ROUGE-Lsum 0.227 0.218 0.290 0.275 0.192 0.173 0.207 0.170 0.236 0.201 0.259 0.252

BERTScore
BERTScore P 0.741 0.710 0.746 0.731 0.703 0.687 0.703 0.671 0.738 0.711 0.735 0.715
BERTScore R 0.722 0.716 0.736 0.737 0.690 0.673 0.690 0.676 0.714 0.697 0.728 0.724
BERTScore F1 0.731 0.712 0.741 0.734 0.696 0.680 0.696 0.674 0.726 0.703 0.731 0.719

SacreBLEU
SacreBLEU 0.055 0.033 0.068 0.060 0.030 0.019 0.024 0.024 0.051 0.043 0.056 0.049
BLEU BP 0.721 0.882 0.794 0.909 0.791 0.892 0.745 0.954 0.717 0.825 0.774 0.930

SemScore
SemScore Multilingual 0.752 0.765 0.780 0.803 0.720 0.692 0.751 0.730 0.750 0.752 0.787 0.799

SemScore 0.644 0.579 0.652 0.649 0.571 0.442 0.520 0.499 0.637 0.545 0.632 0.626

Time

GEval GEval Correctness 0.212 0.550 0.212 0.487 0.400 0.200 0.550 0.550 0.250 0.480 0.270 0.470

ROUGE

ROUGE-1 0.345 0.675 0.530 0.658 0.421 0.642 0.792 0.701 0.379 0.680 0.597 0.647
ROUGE-2 0.205 0.500 0.388 0.481 0.298 0.436 0.667 0.517 0.237 0.495 0.466 0.457
ROUGE-L 0.326 0.646 0.503 0.619 0.394 0.565 0.715 0.682 0.361 0.640 0.554 0.604

ROUGE-Lsum 0.326 0.646 0.503 0.619 0.394 0.565 0.715 0.682 0.361 0.640 0.554 0.604

BERTScore
BERTScore P 0.742 0.865 0.812 0.863 0.764 0.815 0.912 0.850 0.756 0.859 0.829 0.850
BERTScore R 0.717 0.886 0.822 0.903 0.679 0.868 0.876 0.889 0.717 0.891 0.834 0.895
BERTScore F1 0.728 0.875 0.816 0.881 0.718 0.838 0.892 0.868 0.734 0.873 0.830 0.871

SacreBLEU
SacreBLEU 0.115 0.355 0.309 0.347 0.036 0.259 0.454 0.324 0.106 0.348 0.346 0.312
BLEU BP 0.666 0.910 0.861 0.969 0.354 0.874 0.772 0.955 0.619 0.903 0.858 0.966

SemScore
SemScore Multilingual 0.556 0.855 0.693 0.866 0.517 0.798 0.825 0.800 0.559 0.864 0.733 0.845

SemScore 0.512 0.836 0.713 0.856 0.371 0.777 0.816 0.793 0.516 0.831 0.736 0.837

Full

GEval GEval Correctness 0.297 0.353 0.366 0.490 0.410 0.320 0.410 0.480 0.324 0.348 0.393 0.518

ROUGE

ROUGE-1 0.356 0.449 0.443 0.486 0.337 0.489 0.485 0.461 0.353 0.465 0.441 0.482
ROUGE-2 0.163 0.248 0.229 0.265 0.159 0.265 0.287 0.257 0.165 0.258 0.234 0.258
ROUGE-L 0.294 0.381 0.373 0.408 0.287 0.419 0.410 0.388 0.295 0.393 0.370 0.406

ROUGE-Lsum 0.294 0.381 0.376 0.412 0.287 0.419 0.410 0.388 0.295 0.393 0.373 0.409

BERTScore
BERTScore P 0.764 0.786 0.777 0.786 0.754 0.793 0.794 0.778 0.764 0.793 0.771 0.783
BERTScore R 0.730 0.779 0.771 0.806 0.715 0.780 0.784 0.784 0.725 0.779 0.771 0.804
BERTScore F1 0.746 0.781 0.773 0.795 0.733 0.785 0.789 0.781 0.743 0.785 0.770 0.793

SacreBLEU
SacreBLEU 0.086 0.149 0.149 0.163 0.049 0.147 0.179 0.149 0.079 0.151 0.149 0.156
BLEU BP 0.696 0.831 0.844 0.937 0.654 0.802 0.818 0.904 0.689 0.803 0.839 0.936

SemScore
SemScore Multilingual 0.702 0.792 0.761 0.833 0.674 0.787 0.775 0.793 0.695 0.800 0.771 0.827

SemScore 0.627 0.709 0.682 0.741 0.580 0.713 0.674 0.717 0.627 0.713 0.671 0.731


