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Abstract
Structured State Space Models (SSMs) are an
upcoming family of sequence models that show
promising performance on a wide range of tasks.
For instance, experiments with small models in-
dicate that structured SSMs begin to outperform
transformers in language modeling. Additionally,
they exhibit desirable properties such as efficient
sampling strategies for training and inference. In
this seminar paper, I provide a gentle introduction
to structured SSMs and give an overview over
their advantages, disadvantages, applications, and
my predictions of future developments.

1. Introduction
Large-scale sequence modeling becomes more and more rel-
evant. The most prominent example is language modeling,
which is largely dependent on scaling up the context win-
dows models can take into account. Existing architectures
are inherently flawed with respect to that problem. Trans-
formers scale quadratically in the sequence length, resulting
in slow inference and high resource requirements. RNNs
suffer from poor performance, mainly caused by their inabil-
ity to retain long-term context in the hidden state. Structured
state space models are a promising alternative because they
offer two alternative formulations: A recurrent formulation
that allows for efficient inference, and a parallel formulation
based on convolutions that allows for parallel training and
circumvents gradient problems (Gu et al., 2022b). Addi-
tionally, structured SSMs are a theoretically stronger model
family for continuous input signals. Transformers and clas-
sical RNNs are designed for discrete sequences, having no
notion of continuity. In contrast, structured SSMs are based
on mathematical foundations that explicitly model the input
sequence as a continuous signal. That allows them to handle
varying sampling intervals, even within single sequences,
without any modifications.

My main contribution is a gentle introduction to structured
state space models and their advantages and disadvantages.
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Additionally, I provide an overview over applications and
corresponding state-of-the-art architectures, and give my
prediction for further developments in the field.

2. Background
2.1. Online Function Approximation

Main Idea In machine learning, the main idea of online
function approximation is to provide models with mathemat-
ically principled, compressed representations of sequence
histories. The first architecture that followed this approach
was Legendre Memory Units (LMUs) (Voelker et al., 2019),
but in the following I will introduce a more general solution.

HiPPO Framework The HiPPO framework (Gu et al.,
2020) generalizes LMUs to a more abstract framework for
online function approximation. It takes in a continuous in-
put signal u(t) and aims at approximating it with respect
to a probability measure µ(t). The measure can be concep-
tualized as a weight function for the approximation error.
Different instantiations of the HiPPO framework refer to
different choices of measure. For instance, picking µ(t) as
a window with limited context and uniform value yields
LMUs. Since the approximation is to be computed online,
meaning only u≤τ is known at time τ , the measure’s support
(−∞, τ ] varies. As a consequence, the measure µ(τ)(t) is a
function of time t and parameterized by the current point in
time τ .

The compression happens by projecting u(t) onto a poly-
nomial function basis {gn}n<N . The basis functions are
chosen such that they are orthogonal with respect to the mea-
sure, meaning ∀n,m < N : ⟨gn, gm⟩µ(t) = δn,m where the
inner product with respect to any measure is defined as
⟨f, g⟩µ =

∫∞
0

f(t)g(t)dµ(t). The compressed representa-
tion of the input function history up to τ is the basis func-
tions’ coefficients, which are computed by projecting the
input function onto the respective basis function via inner
product: c(τ)n = ⟨u≤τ , gn⟩µ(τ) . Recalling that the goal is to
compute the compressed representation c(t) ∈ RN online,
the idea now is to differentiate the coefficients with respect
to time. It turns out that d

dtc(t) approximately evolves as a
system of linear ordinary differential equations of the form

d

dt
c(t) = A(t)c(t) +B(t)u(t) (1)
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where A(t) ∈ RN×N and B(t) ∈ RN×1 can be derived
in closed-form for the respective measure. While the op-
erators A,B depend on time in the general case, Gu et al.
(2020) show that they are time-invariant for all HiPPO in-
stantiations they work with. For the actual computation, the
dynamics have to be discretized, which means they take
the general form ck+1 = Akck +Bkuk. This introduces a
discretization step size parameter ∆t, which is crucial for
performance.

Theoretically, the approximation of u(t) can now be re-
stored from the coefficients as û(t) =

∑
n<N cn(t)gn(t).

Figure 1 visualizes the reconstructed signal for two different
instantiations of the HiPPO framework. That being said, in
practice the approximation is not actually realized. Instead,
the models work directly on the compressed representation
of the approximated signal history c(t).

Figure 1. Plots of input signal u(t) (black), HiPPO reconstruc-
tion û(t) (red), and measure function µ(t) (green) for the HiPPO
instantiation LegS (exponentially decaying measure), and LegT
(uniform, windowed measure) (Gu et al., 2020).2

2.2. State Space Models

Gu et al. (2021) introduce the Linear State Space Layer
(LSSL), the first (non-structured) SSM that incorporates
ideas from the HiPPO framework. It can be written as

d

dt
x(t) = Ax(t) +Bu(t) (2)

y(t) = Cx(t) +Du(t) (3)

where u(t) ∈ R is the input signal, x(t) ∈ RN is the state,
y(t) ∈ RM is the output, and A ∈ RN×N , B ∈ RN , C ∈
RM×N , D ∈ RM are learnable parameter matrices. Du(t)
acts as a projected residual connection and is irrelevant for
any further derivations, which is why I omit it from now on.

A big difference to other sequence models is that the LSSL
layer’s continuous dynamics are manually discretized using
a timescale parameter ∆t. That makes it a good choice for

2Visualization code from: https://github.com/state-spaces/s4

settings such as dealing with irregularly spaced time series.
Note that for sequences that are not based on a continuous
signal, ∆t can also be learned as a model parameter.

With random initialization, the LSSL does not achieve any
noteworthy performance. But when provided with the com-
pressed input function history using ideas from the HiPPO
framework, it becomes a strong model. Equation (2) of the
LSSL takes the same form as Equation (1). That allows
to integrate the HiPPO framework by initializing A and B
with the derived HiPPO matrix and bias for the chosen in-
stantiation. It should be noted that the state dynamic does
not stay fixed after the initialization. A and B are further
optimized during training of the layer.

Finally, I address how to model multichannel sequences with
LSSLs. The definition above describes a map R → RM for
each sequence element, but what is needed for sequences
with H channels is a map RH → RH . Gu et al. (2021)
achieve this by training one LSSL per input-channel, and
combining the parallel LSSL layers with a position-wise
MLP RH·M → RH .

3. Structured State Space Models
3.1. Efficient Computation as Convolution

Problem Primitive state space models such as LSSL-based
architectures have advantages such as dealing well with
irregularly spaced sequences, and allowing for dynamic
selection of discretization interval during training and in-
ference. But fundamentally they are still recurrent architec-
tures, which means they suffer from the typical problems
such as slow training and gradient issues during training
(Gu et al., 2022b). That also impacts their performance on
long sequences, even though the HiPPO framework inte-
gration provides a theoretically strong fundament for good
long-range performance.

Convolutional Formulation Gu et al. (2022b) introduce an
alternative way to compute SSM outputs for all sequence
positions at the same time. This enables fast, parallel train-
ing and eliminates gradient problems during training caused
by unrolling the recurrent computational graph. Note that
this formulation is not mutually exclusive with the recurrent
formulation. You can train in parallel using the following
convolutional formulation, but still do efficient, recurrent
inference.

Plugging the LSSL’s recurrent formulation (see Equa-
tions (2) and (3)) into itself a few times yields a closed-form
solution for the output after several recurrent steps

yk = CAkBu0 + · · ·+ CABuk−1 + CBuk (4)

where for instance A is the discretized version of A.
Therefore, it can be computed as a single long convo-
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lution y = K ∗ u, meaning a convolution with a kernel
K =

(
CAiB

)
i∈[L]

of the same length L as the input signal.

The convolution itself can be computed efficiently in the
Fourier domain, but the kernel is non-trivial to compute
due to the powers of A (Gu et al., 2022b). The following
approaches aim at finding an efficient way to compute the
kernel by enforcing certain structures of A, thereby intro-
ducing the model family of Structured SSMs.

Normal Plus Low-Rank (S4) Performing the conjugation
(A,B,C) ∼ (V −1AV, V −1B,CV ) does not change the
output an SSM computes, it only performs a base change of
the state. That means one can conjugate A without changing
the SSMs behavior. In principle, that allows to diagonal-
ize the HiPPO matrix via conjugation A = V −1ΛV , which
would make computing the convolution kernel trivial and
computationally inexpensive. Unfortunately, this primitive
diagonalization is numerically unstable for larger states,
because V would have entries exponential in the state size.

Instead, Gu et al. (2022b) exploit that HiPPO matrices
can be decomposed as the sum of a normal matrix and
a low-rank correction A = N − PQT = V ΛV ∗ − PQT

where V ∈ CN×N is unitary, Λ is diagonal, and
P,Q ∈ RN×r form a low-rank factorization. Further-
more, the normal plus low-rank form can be turned
into a diagonal plus low-rank form by the conjugation
V ΛV ∗ − PQT = V (Λ− (V ∗P )(V ∗Q)∗)V ∗.

Using the diagonal plus low-rank decomposition, the con-
volution kernel K can be efficiently evaluated using a few
tricks. I briefly sketch Gu et al. (2022b)’s approach: 1) In-
stead of computing K directly, they compute its spectrum by
evaluating its truncated generating function at the roots of
unity. From this representation, K can be efficiently recov-
ered using the inverse Fourier transform. 2) Evaluating the
generating function does not involve a power of A anymore,
but an inverse. There is an identity called Woodbury matrix
identity, which reduces the problem of computing the in-
verse of any matrix plus low-rank correction (M +LR∗)−1

to computing the inverse of the matrix M−1. That can be
used to reduce computing A−1 to the final, truly diagonal
case. 3) Computing the diagonal case is equivalent to the
computation of so-called Cauchy kernels, which is a com-
mon problem with stable, near-linear time algorithms.

The resulting structured SSM is called S4. As already men-
tioned, it can be evaluated with two different algorithms. S4
Recurrence is the recurrent formulation and one step can be
evaluated in O(N) operations. S4 Convolution can be used
to evaluate the convolution kernel in O(N + L) operations
and space, which can then be applied in O(L · logL). Note
that this is a significant advantage over transformers, which
are quadratic in the sequence length L.

Diagonal Further work such as S4D (Gu et al., 2022a), DSS

(Gupta et al., 2022), and GSS (Mehta et al., 2023) shows that
dropping the low-rank correction term does not heavily influ-
ence performance and allows for simpler and more efficient
computation. The resulting diagonal structured SSMs form
the basis of most advanced structured SSM architectures,
including the ones discussed in further sections.

3.2. Addressing Input-Selectivity

Problem While structured SSMs have desirable properties
with respect to computation and efficiency, their perfor-
mance on discrete sequence modeling tasks is not on par
with transformers yet. Their core problem is often referred
to as missing (input-)selectivity, which means the param-
eters A,B,C,D,∆, and therefore the computed operator,
are independent of the input. Consequently, SSMs fail even
on simple synthetic tasks such Induction Head (retrieving
the token after special token), Associative Recall (retrieving
a specific value from key-value input) (Fu et al., 2023), and
Selective Copying (copying a sequence to unevenly spaced
locations marked by special tokens) (Arjovsky et al., 2016).
In the following, I present three architectures that address
this issue. H3 (Fu et al., 2023) and Hyena (Poli et al., 2023)
try to achieve some input-selectivity by designing an archi-
tecture around ”classical” structured SSMs. Mamba (Gu &
Dao, 2023) goes one step further and explicitly turns some
parameters into functions of the input.

H3 Fu et al. (2023) introduce the H3 architecture, which is
specifically designed to solve Induction Head and Associa-
tive Recall and achieves a large jump in performance for
both of them. Both of these tasks require the ability to per-
form an operation on a token based on the previous token’s
value. H3 starts off by computing 3 projections Q,K, V
of the current input token u, which are loosely related to
the projections of the attention mechanism. Then, the layer
output is calculated as

H3(Q,K, V ) = Q⊙ SSMdiag

(
SSMshift(K)⊙ V

)
(5)

which can be conceptualized as two steps: 1) K is fed
through a so-called Shift-SSM, an SSM with A fixed to shift
the state one position ”down” (x(t)

0 becomes 0, x(t)
1 becomes

x
(t)
0 and so on). Even though B is learned in practice, from

assuming it to be fixed to the first basis vector e1 and recall-
ing Equation (2), one can see that this keeps a local history
of the scalar SSM inputs in the state vector. The Shift-SSM’s
output interacts with V via Hadamard product, thereby relat-
ing the previous token’s K to the current token’s V . 2) The
output of this operation is fed through a ”normal” diagonal
SSM, and the final layer output is computed as Hadamard
product with Q.

Additionally, the authors introduce a hardware-optimized
CUDA kernel called FlashConv, that speeds up the convo-
lution computation by fusing operations in the SRAM and
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only then writing back to HBM, similar to the well-known
FlashAttention (Dao et al., 2022).

Hyena By introducing Hyena, Poli et al. (2023) generalize
the concept of the H3 layer, thereby drastically improv-
ing the performance on recall and reasoning tasks such
as the ones mentioned above. To demonstrate the anal-
ogy to H3, I first provide a different view on SSMs and
H3: SSMs effectively compute an implicitly parameter-
ized long convolution, which means the convolution ker-
nel’s elements are functions of the actual model parameters.
H3’s convolutions and Hadamard products can be rewrit-
ten as matrix multiplications H3(q, k, v) = DqSψDkSφ · v
where Dx = diag(x) and Sψ, Sφ are Töplitz matrices for
the convolution kernels realized by the diagonal SSM and
Shift-SSM respectively. The Hyena layer generalizes that to
y = DNH

x SNH

h . . . D1
xS

1
h · v. That means H3 is an instanti-

ation of Hyena with NH = 2 and a constrained first kernel.
Of course, in practice all these matrices are not materialized,
but computed by convolutions in the Fourier domain and
Hadamard products.

Strictly speaking, the Hyena framework is not just
an SSM architecture, but a more general framework
of interleaved implicitly parameterized long convolu-
tions and data-controlled gating by Hadamard prod-
ucts. Poli et al. (2023) compute their kernels as
ht = Window(t) ·MLP

(
PositionalEncoding(t)

)
where

Window is a weighting function for the sequence positions,
and most commonly chosen as an exponential decay. It is
still appropriate to view Hyena as an architectural frame-
work for SSMs. Since SSMs also realize a convolution with
an implicit kernel, the Hyena convolutions with the kernels
specified above can simply be replaced with SSM layers.

Mamba H3 and Hyena try to achieve some input selec-
tivity by designing an architecture around classical SSMs.
With Mamba, Gu & Dao (2023) go one step further and
actually compute the SSM parameters ∆, B,C as learnable
functions of the input. This results in a massive boost in per-
formance, with Mamba being the first SSM-based model to
solve the Selective Copying task and being the first to match
the performance of transformers on language modeling.

This performance increase is no free lunch. Since the param-
eters are now not only functions of the time but also of the
input, the convolutional formulation is not possible anymore.
To mitigate this, Gu & Dao (2023) introduce a hardware-
optimized scan algorithm that fuses the discretization and a
limited number of recurrence steps to a single CUDA kernel,
preventing most IO operations between SRAM and HBM.

4. Applications & Performance
Long-Range Sequence Modeling Since SSMs scale sub-
quadratically with the sequence length, they allow for deep

models, even when large context windows are required.
Based on the architectures presented in this seminar paper,
there is follow-up work that specifically tackles long range
tasks. Hasani et al. (2023) combine SSMs with ideas from
liquid time-constant networks (Hasani et al., 2021). Gu et al.
(2023) derive an alternative formulation of the HiPPO frame-
work and introduce novel instantiations. Smith et al. (2023)
fuse multiple S4 layers to a multi-input multi-output S5
layer. Table 1 provides an overview over Long Range Arena
(LRA) (Tay et al., 2021) benchmark scores. I also include
Big Bird (Zaheer et al., 2020), a strong transformer baseline
explicitly designed to handle long-range dependencies. The
comparison shows that SSM-based architectures perform
significantly better than transformer-based architectures.

Language Modeling Table 2 shows results of SSMs and
a transformer baseline on the WikiText-103 (Merity et al.,
2017) language modeling task. For these smaller models,
SSM-based models designed for input-selectivity start to
exceed transformer-baselines. Experiments with large-scale
models are not publicly available yet.

Other Applications Potential applications of SSMs are
manifold. Qiao et al. (2024) introduce a Mamba-based
multimodal LLM. Zhu et al. (2024) present a drop-in re-
placement for vision transformers. Liu et al. (2024); Ruan
& Xiang (2024) perform 2D image segmentation, Xing et al.
(2024) 3D volume segmentation, and Yang et al. (2024) 4D
volume-video segmentation. Fei et al. (2024) train a diffu-
sion model based on SSMs. Liang et al. (2024) introduce a
3D point cloud processing backbone. SSMs are also applied
to other domains, such as speech (Goel et al., 2022; Zhang
et al., 2024), time series (Zhang et al., 2023; Patro & Ag-
neeswaran, 2024), and graphs (Wang et al., 2024; Behrouz
& Hashemi, 2024).

5. Conclusion
Structured SSMs allow for fast parallel training and efficient
recurrent inference, which makes them a promising model
family for sequence modeling. The fact that most state-
of-the-art models rely on Mamba as a backbone indicates
that input-selectivity is crucial for a lot of tasks, though.
Consequently, I suspect ”pure” linear time invariant SSMs
will only be used for niche applications such as irregularly
spaced sequences in the future. That does not make SSMs
useless for tasks that require input-selectivity, such as lan-
guage modeling. The trend in language modeling seems to
go further into the direction of scaling up models as much as
possible, which is why efficiency becomes more and more
relevant. Replacing transformer layers by SSM layers al-
lows researchers to make fine-grained trade-offs between
expressivity and efficiency for individual layers, potentially
resulting in higher performance of the full models.
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current memory with optimal polynomial projections. In
Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and
Lin, H. (eds.), Advances in Neural Information Process-
ing Systems 33: Annual Conference on Neural Informa-
tion Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual, 2020.

Gu, A., Johnson, I., Goel, K., Saab, K., Dao, T., Rudra,
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Table 1. Long Range Arena (Tay et al., 2021) scores for long range models. Higher is better. All results taken from (Hasani et al., 2023).

MODEL / TASK AAN PATH-X AVG.
(INPUT LENGTH) 4000 16384

(GU ET AL., 2022B) S4 87.09 88.10 80.48
(GU ET AL., 2022A) S4D-INV 91.09 92.80 85.50
(GUPTA ET AL., 2022) DSS 87.6 85.0 79.45

(HASANI ET AL., 2023) LIQUID-S4 91.20 96.66 87.32
(GU ET AL., 2023) S4-LEGS/FOUT 90.30 × 78.50
(SMITH ET AL., 2023) S5 88.26 85.25 82.46

(ZAHEER ET AL., 2020) BIG BIRD 59.29 × 55.01

Table 2. WikiText-103 (Merity et al., 2017) test perplexity for language models. Lower is better. If not specified otherwise, results
are taken from the model papers. *Includes two transformer layers. **WikiText-103 results only published in response to reviews:
https://openreview.net/forum?id=AL1fq05o7H (visited: 12 Jun 2024)

MODEL PERPLEXITY #PARAM

(GU ET AL., 2022B) S4 21.0 249M
(FU ET AL., 2023) HYBRID-H3* 18.5 125M
(POLI ET AL., 2023) HYENA-3 18.5 125M
(GU & DAO, 2023) MAMBA** 16.3 125M

(POLI ET AL., 2023) TRANSFORMER BASELINE 18.6 125M


