Applied Machine Learning Lab **Department of Computer Science Technical University of Munich**

Certificate Computation

Patch-wise for one other token

- <u>Input</u>: single patch, the closest token, and any other token
- <u>Output</u>: perturbation radius for which the *closer token* does not flip
- <u>Computation</u>: project input patch onto separation plane

Patch-wise

- <u>Input</u>: single patch, the closest token, full vocabulary
- <u>Output</u>: perturbation radius for which the *patch's tokenization does not flip* to any other token
- <u>Computation</u>: Minimum over triple-wise (above)

Image-wise

- <u>Input</u>: image, closest tokens, full vocabulary
- <u>Output:</u> *map of patch-wise certificates* for the image
- <u>Computation</u>: construct tensor of patch-wise certificates

Ablation: Improving Learned Vocabularies **Per-channel tokens**

- <u>Idea</u>: *individual tokens per channel* incorporating all
- <u>Result</u>: better preservation of fine structure

Soft-discretization

- <u>Idea</u>: replace patches by linear combination of tokens weighted by softmax distances during training
- <u>Result</u>: slightly more diverse token-usage

Maximizing token-distance entropy

• <u>Idea</u>:

$$\mathcal{L}_{\text{negentropy}}(\text{dists}) = \sum_{d \in \text{dists}} p(d) \cdot \log p(d)$$

• <u>Result</u>: slightly more diverse token-usage

Sobel-based structure loss

• Idea: $\mathcal{L}_{\text{structure}}(x_{\text{rec}}, x) = \mathcal{L}_{L2}(\text{mag_sobel}(x_{\text{rec}}), \text{mag_sobel}(x))$

where mag_sobel(x) = $\sqrt{(x * K_{sobel_x})^2 + (x * K_{sobel_y})^2 + \epsilon}$ • <u>Result</u>: faster training convergence, but no significant improvement of reconstructions

Noise augmentation

- <u>Idea</u>: encourage more diverse token-usage by *adding noise* to samples before reconstruction
- <u>Result</u>: slightly more diverse token-usage

Applied Machine Learning Lab SS2024

Robustness through Input Sparsity in Computer Vision

Nicolas Stellwag, (Tao Liu - dropped out), Advisor: Aman Saxena

Robustness through Input Sparsity in Computer Vision

J. M. Cohen, E. Rosenfeld, and J. Z. Kolter, "Certified Adversarial Robustness via Randomized Smoothing," Jun. 15, 2019, arXiv: arXiv:1902.02918

Dataset	Classifier	Acc.	Patch Cert.	Img. Cert. (summed)	RS* Acc. @ σ	RS* Cert. @ σ	SSPGD Acc. @ ε
MNIST	Discrete	97.97 %	0.09	4.47	-	-	94.73 % @ 4.0
	Baseline	98.48 %	-	-	97.60 % @ 2.0	4.80 @ 2.0	74.06 % @ 4.0
CIFAR-10	Discrete	77.08 %	0.11	20.57	-	-	73.80 % @ 0.5
	Baseline	87.32 %	-	-	72.82 % @ 1.0	1.94 @ 1.0	59.84 % @ 0.5

Learned Vocabulary

	Patch Cert.	Img. Cert. (summed)	RS* Acc. @ σ	RS* Cert. @ σ	SSPGD Acc. @ ε
6	0.83	40.58	-	-	91.67 % @ 4.0
6	-	-	97.60 % @ 2.0	4.80 @ 2.0	74.06 % @ 4.0
6	0.46	87.67	-	-	69.26 % @ 0.5
6	-	-	72.82 % @ 1.0	1.94 @ 1.0	59.84 % @ 0.5

- Large decrease of downstream-task performance for RGB images

Denoised Vocabulary

國內 約 第		
	L	
	1	
	5	
		and and and

Frozen tokens drawn from Gaussian distribution

Better downstream-task performance than learned vocabulary